Difference between revisions of "BreakFast:2021HDU暑期多校训练营1"

Jump to navigation Jump to search
update C
(update AEFGHIJK)
(update C)
Line 70: Line 70:
[https://acm.hdu.edu.cn/showproblem.php?pid=6951 Problem B. Rocket land]
[https://acm.hdu.edu.cn/showproblem.php?pid=6951 Problem B. Rocket land]


[https://acm.hdu.edu.cn/showproblem.php?pid=6952 Problem C. Puzzle loop]
== [https://acm.hdu.edu.cn/showproblem.php?pid=6952 Problem C. Puzzle loop] ==
 
=== 题目大意 ===
 
<math display="inline">T</math> 组输入,每组输入一个大小为 <math display="inline">(n - 1) \times (m - 1)</math> 的地图,地图字符集为 <math display="inline">\{'0', '1', '.'\}</math>.
 
<math display="inline">'0'</math> 表示该格子周围四条边有偶数条红边.
 
<math display="inline">'1'</math> 表示该格子周围四条边有奇数条红边.
 
<math display="inline">'.'</math> 表示该格子周围四条边无限制.
 
要求红边形成若干个边不相交的环,求方案数.
 
<math display="inline">1 \leq T \leq 100, 1 \leq n, m \leq 17</math>.
 
=== 分析 ===
 
红边实质上就是若个干不相交的欧拉路嘛,因此要求每个交点的度为偶数,这样便满足了形成若干个边不相交的环这一条件.
 
此外对每个格子的四条边建异或方程.
 
于是得到异或方程组,高斯消元即可.
 
=== 代码实现 ===
 
<syntaxhighlight lang="cpp">#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
 
const int M = (int)1e6;
const int N = (int)17;
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const ll mod = (ll)998244353;
 
int n, m;
char s[N + 5][N + 5];
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};
int row, col;
bool a[2 * (N + 1) * (N + 1) + 5][2 * N * (N + 1) + 5];
 
inline int id(int x1, int y1, int x2, int y2)
{
    if(x1 > x2) swap(x1, x2);
    if(y1 > y2) swap(y1, y2);
    if(x1 == x2) return (x1 - 1) * m + y1;
    else        return (n + 1) * m + (x1 - 1) * (m + 1) + y1;
}
 
void build()
{
    row = 0, col = (n + 1) * m + n * (m + 1);
    for(int i = 1; i <= n + 1; ++i)
    {
        for(int j = 1; j <= m + 1; ++j)
        {
            ++row;
            for(int k = 1; k <= col + 1; ++k) a[row][k] = 0;
            for(int k = 0, x, y; k < 4; ++k)
            {
                x = i + dx[k], y = j + dy[k];
                if(x < 1 || x > n + 1 || y < 1 || y > m + 1)    continue;
                a[row][id(x, y, i, j)] = 1;
            }
        }
    }
    for(int i = 1; i <= n; ++i)
    {
        for(int j = 1; j <= m; ++j)
        {
            if(s[i][j] == '.') continue;
            ++row;
            for(int k = 1; k <= col + 1; ++k) a[row][k] = 0;
            a[row][id(i, j, i, j + 1)] = 1;
            a[row][id(i, j, i + 1, j)] = 1;
            a[row][id(i, j + 1, i + 1, j + 1)] = 1;
            a[row][id(i + 1, j, i + 1, j + 1)] = 1;
            a[row][col + 1] = s[i][j] - '0';
        }
    }
//    for(int i = 1; i <= row; ++i)
//    {
//        bool f = 0;
//        for(int j = 1; j <= col; ++j)
//        {
//            if(!a[i][j])    continue;
//            if(f) printf(" ^ ");
//            printf("x(%d)", j);
//            f = 1;
//        }
//        printf(" = 0\n");
//    }
}
 
int gauss(int n, int m)
{
    int c, r;
    for(c = 1, r = 1; c <= m; ++c)
    {
        int t = r;
        for(int i = r; i <= n; ++i)
        {
            if(a[i][c])  t = i;
        }
        if(!a[t][c]) continue;
        for(int i = c; i <= m + 1; ++i) swap(a[t][i], a[r][i]);
        for(int i = 1; i <= n; ++i)
        {
            if(i == r)  continue;
            if(a[i][c])
            {
                for(int j = m + 1; j >= c; --j)
                {
                    a[i][j] ^= a[r][j];
                }
            }
        }
        ++r;
    }
    for(int i = r; i <= n; ++i)
    {
        if(a[i][m + 1])  return -1;//无解
    }
    return m - r + 1;//自由元个数
}
 
ll quick(ll a, ll b, ll p = mod)
{
    ll s = 1;
    while(b)
    {
        if(b & 1) s = s * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return s;
}
 
void work()
{
    scanf("%d %d", &n, &m);
    --n, --m;
    for(int i = 1; i <= n; ++i) scanf("%s", s[i] + 1);
    build();
    int r = gauss(row, col);
    if(r == -1) printf("0\n");
    else        printf("%lld\n", quick(2, r));
}
 
int main()
{
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);
//    ios::sync_with_stdio(0);
//    cin.tie(0); cout.tie(0);
    int T; scanf("%d", &T);
    for(int ca = 1; ca <= T; ++ca)
    {
//        printf("Case #%d:\n", ca);
        work();
    }
//    work();
//    cerr << 1.0 * clock() / CLOCKS_PER_SEC << "\n";
    return 0;
}</syntaxhighlight>


[https://acm.hdu.edu.cn/showproblem.php?pid=6953 Problem D. Another thief in a Shop]
[https://acm.hdu.edu.cn/showproblem.php?pid=6953 Problem D. Another thief in a Shop]

Navigation menu